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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

MEMORANDUM REPORT

for the
Army Alr Forces, Alir Technical Service Command
BENDING AND SHEAR STRESSES DEVELOPED BY THE
INSTANTANEOUS ARREST OF THE ROOT OF A
CANTILEVER BEAM WITH A MASS AT ITS TIP

By Elbridge Z. Stowell, Edwerd B. Schwartz,
John C. Houbolt, end Albert K. Schmieder

SUMMARY

A theoretical and experimental lhvestigation has been
made of the behavior of a cantilever beam in transverse
motion with a mass at 1its tip when the root is suddenly
brought to rest. Equations are given for determining the
stresses, the deflections, and the accelerations that arise
in the beam as a result of the impact. The theoretical
equations, which have been confirmed experimsntally, reveal
that for a beam with a given cross sectlion and velocity at
impact and for a given ratio of tip mass to beam mass, the
bending stresses for a particular mode at a given percentage
of the distance from root to tip are independent of the
length of the beam; whereas, the shear stresses vary
inversely with the length.

The addition of a mass to the tip of a cantilever
beam increases appreciably the stresses produced by the
first mode of vibration but changes only slightly the
stresses contributed by the higher modes. The tip mass
increases the mazximum bending stress much less than might
be expected on the baslis of experience with the static
action of structures. For practical englineering analysis
thte maximum bending stress developed 1in a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes without regard
to phase relations between modes.
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INTRODUCTI ON

When an sirplane lands, the vertical component of
the velocity is rapidly reduced to zero. The shock of
the sudden change in motion gives rise to vibratory
stresses in the alirplane. As 2 beginning in the study
of these stresses a previous report (reference 1) dis-
cussed in detail the behavior of a cantilever beam in
translational motion when its root is suddenly brought
to rest. 1In that paper equations are given for deter-
mining the stresses, the deflections, and the accelera-
tions that arise throughout the beam as a result of the
impact. The present report extends the basic problem of
reference 1 to include the effect of a concentrated mass
at the tip of the cantilever beam.

As in reference 1, the present paper 1s based on the
usual engineering veam theory. In this theory the
deflections are considered to be the result of bending
alone, shear deflections neglected. The theory as applied
to ordinary beams gives reasonably good results so long
as the distance between inflection points 1s greater than
ra few times the depth of the beam. When this theory for
beam action is used in vibration problsms, such as that
in the present paver, the results are satisfactory for
those modes of vibration for which the nodes are not too
close together.

This report summarizes the results of a theoretical
solution given in appendix A and vresents an experimental
verification of these results. A numerical example for
the caliculation of the maximum stresses near the root of
the cantilever beam is given Iin appendix B.

SYMBOLS

E modulus of elasticity
weight density of material

A coefficient of equivalent viscous damping of
material

c velocity of sound in materialb/%:
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- ) g acceleration of gravity
L length of beam

T moment of inertia of cross section of beam about
neutral axlis

A cross=sectional area of beam

P radius of gyration of cross sectlon of beam 6/%)
X coordinate along beam measured from root
v distance from neutral axis of beam to any fiber
t time, zero at lmpact
o)

overator ——
P erErOT 5
n integers 1, 2, 3, etc., designating a particular

mode of vibration

Gn nth positive root of equation 1 + cos 6 cosh 8

+ r8 (sinh © cos 8 - cosh @8 sin g) =0

. . M
r ratio of tip mass to beam mass %

w undamped natural angular freQuency of nth mode,

[
radians per second [Pc —%T

Ferforrerne L
H

w 1 damped natural angular frequency of nth mode,

3

radians per second {®,

i ——

Aw @
where 2 >1, the "frequency" is defined

, " s

by (.Un' =W

v velocity of beam prior to impact
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w(x,t) Aeflectlion of beam at station x and time ¢

wn(x,t) deflection of beam at station x and time t
for the nth mode of vibretion

a{x,t) =accsleration of beam at station x and time t

an(x,t) acceleration of beam at station x and time ¢t
for nth mdode of vibration

o(x,y,t) bending stress in beam at station x, distance
from neutral axis y, and time t

Gn(x,y,t) bending stress in beam at station x, distance
from neutral axis vy, and time t for nth mode
of vibration

T(x,t) average shear stress over cross section of beam
at station x and time ¢

?h(x,t) average shear stress over cross section of beam
at station x and time t for nth mode of
vibration

An bending-stress coefficient for nth mode of
vibration

Bn shear-stress coefficient for nth mode of vibration

Cn deflection coefficient for nth mode of vibration

RESULTS AND CONCLUSIONS

Theoretical

When a cantilever beam with a mass at its tip is under
uni form translation in a direction perpendicular to its
length there is excited a theoretically infinite number
of modes of vibration when its root is instantansously
brought to rest. With each successive mode, damping has
an increasing influence upon the frequencies and amplitudes
of vibration and, for sufficiently high modes, even changes
the type of motion from oscillatory to nonoscillatory
motion. In the lower modes, however, damping has little
effect and only terms of the first order 1n damping need
be included in the egquations. Only the equations applicable
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-to the lower modes, which alone are of importance in any
-practical case, are presented 1n this section of the

paper. TFor a more complete treatment of damping,

avpendix A.

see

The ahgular frequencies (2w times the frequencies

in cps) are given by the equation

en2
w, = pc —S—
n

2

where © is the nth positive root of the equation

n

1 + ces § cosh 6 + rf (sinh 6 cos 6 -~ cosh 8 sin 8)=0 .

In this equation r 1s the ratio of the tip mass to the
for the first threse

modes are given in the following table for several values

mass of the beam. The values of Gn

of r:

r 9, 85 95
0 1.8751 L.69L1 7.8548
i 1.5738 lL.2250 7.2813
% 1.4200 l,.1105 7.190L
% 1.3202 L .0602 7.15%9
1 1.247 l,.0311 7.1339
2 1.077 2.9326 7.1826
.91 5.9557 7.0859
% .855% 3.9220 7.0882

Figure 1 shows graphically the variation of B8,
For each value of

mass ratio r for n =1, 2, and 3.

n the value of en,

with the

and consequently the frequency,

decreases with increasing values of the mass ratio r.

(1)

(2)
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Expressions for the bending stresses, shear stresses,
deflections, and accelerations are the same 2s the expres-
sions given in reference 1 for these quantifties except
that the coefficlents A,, Bp, and Cp, which characterize
each mode, are functions of en additional variable r,
the mass ratio. The bending stress, average shear stress,
and deflection are, respectively, for the nth mode of
vibration:

Aw e
) - t
o, (x,y,t) = A %.% Ee °F  sinow, t (3)
AW °
"'n
Tn(X’t) = Bn E" % E 2 in wl’l t (L!)
Kwn2
2 -—D.y
L
wo(x,t) = Cy g - 2B sin w_ ¢ (5)

The acceleration for the nth mode, when damping is suffi-
clently small, is

a (x,8) = -0,° w_(x,t) (6)

The variation of the dimensionless coefficients A,
Bh, and C, with position along the beam x/L 1is given
in figures 2, 3%, and li, resvectively, for the first three
modes, n = 1, 2, and 3 and for values of r from O to 6.
Figures 2 and 3 indicate that for all values of the mass
ratio r the highest values of A, and B, and hence the
highest stresses occur at the root of the beam. These
highest or root values of A, and B, are shown for
r=02and r =6 in figure 5 for the first 5 modes. Root
values of A, and B, for mass ratios between O and 6 are
given in figure 6 for the first 3 modes. Both figures 5
and 6 show that the addition of a mass et the tip of the
beam (r > 0) increases appreciably the values of the stress
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coefficlents An and B, for the first mode {(n = 1) but
Has a very small effect upon these coefficients flor the
second and higher modes.,

The tip mass Increases the maximum bending stress
much less than might be expected on the: basis of statlc
considerations. For example the addition of a tip mass
6 times the mass of the beam increases the mass moment
about the root 1200 percent whereas the first mode
bending stress coefficient Ay is increased only 18l per-

cent {from 1.566 to L.L150). (8ee. fig. 5.)

The maximum values with respect to time of O (x,y,t)
and ?h(x,t) associated with the nth mode of vibration,
when the effects of damplng are neglected,  are

ol«

Onl%,y) = Ay % E . (7)

x) = By g (8)

o
=

Equations (3) and (u) for bending and shear stress,
from which equations (7) and (8) are obtained, and equa-
tions - (5) and (6) for deflections and accelerations give
the values assoclated with the nth mode of vibration.
Since all modes of vibration occur simultaneously the net
results are the superposition of the effects of .all modes.
This superposition gives the following egquations:

N v -
o(x,y,t) = 3 % E 1 e 2B sin w; t




8 MR No. ILK30

For average shear stress,

2
Moy
— v N
T(x,t) = E-E B Bl e ©<E sin wy t
Aw 2
it
2E .
+ B, e sin W, t+... (10)
For deflection,
AW 2
v L2 _ 1 t
- = = 2R :
w(x,t) s o Ci e sin @y t
hwaa
"ZE °
+ G, e sin w, t + ... (11)

For acceleratlion, when damping is sufficiently small,

2
Aw
v L2 2 - L t
a(x,t)==-g 7; Clwl e 2E sin wl t
AW 2
£ £

For a beam with a glven cross section and velocity
at impact, the equations for bending stress reveal that
at a glven percentage of the distance from root to tilp
and for a glven mass ratio, the bending stress for a
particular mode is lndependent of the length of the beam.
The equations for shear stress reveal that the shear
stress at any station varies inversely with the length
of the beam,
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Experimental

The apparatus which was used to provide for the
instantaneous arrest of a cantilever beam 1s shown in
figure 7. 1In this apparatus two cantilever beams are ,
formed by centrally clamping a steel tube in a heavy split
block. The block is attached to a carriage which is
permitted to run with known velocity over a horizontal
track. The carriage 1s accelerated by s weight acted
upon by gravity in the initial portion of the run and is
kept in a state of uniform translation by an additional
small weight used to overcome friction in the latter
portion of the run. Instantaneous arrest is achieved
by permitting a tapered plug projecting from the
carriage to ram into a fixed chuck. The effect of a tip
mass was studied by increasing the weights on the tips
of the beams in successive tests. The velocity at impact
and the dimensions of the cantilever beams are given in
sprendix B.

The apparatus described herein provides for a much
more rigid clamping of the tube and gives a better control
over the instantaneous arrest than the apparatus described
in reference 1. With the more rigid clamping, less
oscillatory energy was lost by the cantilever beams to
adjacent parts o1 the avpparatus. The damping vpresent,
therefore, more nearly &approached the damping of the
material of the beam.

Extreme fiber bending stresses near the root of each
cantilever beam were measured by means of electrical
strain gages and a recording oscillograph as described
in reference 1. A typical record of the bending strains
at the roots of the two cantilever beams with the mass

ratio 1r = E is shown in figure 8. No measurements were

made of the shear stresses since their values were too
small to be measured accurately in the presence of the
vibrations set up by the rolling of the carriage.

The three quantities that were obtained from the
tests - the frequencies of the first three modes, the
maximuim contribution of the first mode to the total
extreme fiber bending stress at the root, and the
maximum extreme fiber bending stress at the root -
are vnlotted against the mass ratio r in figures 9
and 10 for comparison with the theoretically computed
values. Since inherent local variations in the beam
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properties do not appreciably affect the frequencies,
which are associated with the over-all action of the
Deam, and since frequencies are easy to measure, it is
reasonable to exnect the observed good sgreement between
theoretical and experimental frequencies. (See fig. 9.)
When consideration is given to the fact that stresses are
directly affected by the local variations in the beam
properties and are not read’ly susceptible to instantaneous
accurate measurement the observed agreement between the
experimental and theoretical stresses is also considered
to be satisfactory. I!Ses fig. 10.)

The contribution of tine {irst mode to the total
stress was estimated ifromr the records. (See fig. E.)
It is clear from figure 10 that the first mode contributes
more than half of the total stress. It is also clear from
figure 10 that for practical engineering analysis the
maximum bending stress developed In a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes (in this case 3%)
without regard to phase relations between the modes.

Langley Memorial Aeronautical Laborstory
NMational Advisory Gommittee for Asronautics
Lengley Field, Va., November 30, 19LL
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APPENDIX A
THEORETICAL DERIVATION

General analysis.- Consider in equilibrium a uniform
cantilever beam with o mass at 1ts free end. 1If the root
of the beam 1s suddenly disturbed, as by a shock, in a
direction perpendicular to its length, the beam wlll be
set into damped bending oscillations. The equation of
motlon for these bending oscillations 1is given by the
differential equation (reference 1)

n 2
axlt sxtat & >t2

With the use of the notation o2 = %? equation (Al) may
be written

L

LA
éXLL

jor

=0 (A2)

w1 &
éxudﬁ p202 ot

=i

w
2

This partial differentlial equation is reduced to an
ordinary differentlal equation of the lith order by

writing p = o ; thus,

ot

L 2
(i + 2p) S g w =0 (83)

axdt

The general solution of equation (A3) 1is

w = P cosh e% + Q sinh 6% + R cos 6% + 8 sin B% (al)

ad
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where

e:L/ 3 —

V pe b 1+ p%

The coefficients P, 3, R, and S are to be determined
from the boundary conditions. The case under considera-
tion is that of a cantilever wlith a wmass at its free end
moving with uniform velocity v and having its root
brought instesntaneously to rest. The boundary conditions
for this care are

ow = _
©t>X:O =Pl g =V - vd
é_\':‘{ = <§EEV_\, = 0
NCE P éx%/x=L
3 (2 |
EI 5—-—9 = g(’-—@ = -g p2(w) o
0%/ ymy, TNV yap

The fourth boundary condition, which is an applica-
tion of Newbton's third law, equates the shear force at
the tip of the beam to the inertia force of the tip mass.
The velocity of the root as glven by the first boundary
condition is represented grapnically in figure 11.
Tollowing the onrocedure adopted in reference 1, the
solution will be obtained for the boundary condition

(Qﬂ) =l = -ve

and to the resulting velocity will be added the constant
velocity v.
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With the applicatlion of the boundary conditions to
equation (AL), the operational solution for the velocity
(that induced by =-vi) 1is found to be

X
oA pw = vt _ f(ﬁ_’_ﬁ) R
=3 -
L 2 1+cosBcosh8+ r8(sinh 6cos e-coshesiry

(A5)

where

£l = (1 + 8 h 6)( sh9£+cos z
<9i.> cos cos Y{{co I 81

. x x \
sin § sinh @ (cosh 8= - cos f— )
I L /

4+

+

X
(sinh B cos 6 + cosh @ sin @g){sin 87 - sinh e%)

+

X
2rg [sinh 8 cos g cosh 07 - cosh B sin 8 cos 8% .

+

cos O cosh e<sin 8%— - sinh e%):]

. . ¥ Tip mass
and r 1is the ratio =— = —~—£——-——.

m Interpretation of

Beam mass
this operational expression and addition of the con-

stant velocity v gives for the total velocity

A 2
o _;ﬁ_t mn
> éw(x’t) X 2E —EE— . '
T =v ~-vl+ 2v nil F(Gn]—;—>e cos W't —“'“—1— ¥ wn2- sin w 't 1
)-JE2

(46)
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where
6n nth positive root of the frequency equation
1 + cos B z2oehe+r8(sinrh gcos 8 - coshdsin )= 0
(all rocts, namely %6, _1en, have besn considered
in the interpretation)
g €
n
w, = pe ——2— undamped natural frequency of nth mode,
L radians/sec
__2__.3._
Wt = &y 1~ 2 dampezd natural angu;Lar frequency
L of nth mode, radians/sec
s - . R
(1 + cos 9 cosh 8,) <oosh 8, T + cos On f)
. . X x 0
+ sin 6, sinh 8, \cosh On T - cos &n f)
>

+ (sinh 8, cos O, + cosh B, sin B,) (sin 6y T’—c—sinh Op L£>

+ 2rg, [sinh 0, cos Oy cosh By i{- ~ cosh 6 sin §, cos en%

L+ cos O, cosh 8 sin 811 - sinh ey1 L)_J )

enEl*'T)(SinhenOOS Bp - cosh 8, sin §,)-2rf, sinh B, sin en]

D)

Integration of equation (A6) with respect to time with
the condition (w)t:O = 0 gives for the deflection

when t 2 O

» Fo,%) _lh
w(x,t) = 2v ——-—‘/—e 2E sin W 't 21
E Wy, !
n=1
2
2 = -
v T, 1 “oF .
= T = C, "FT———==3 ¢ sin w,'tZ (A7)
- Now, 2 i
l — —
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where

is

g —_— v ———— .
w(x,t) = Y Cn /—"*“'”—m e sin w,' tZ4  (A8)

W
When 2§?-> 1 equation (A8) may be put in the form

Aw 2
2 1 -
v L
wn(x,t) = Py Ch 5. 2 — ¢ ©°E sinh @, 7t/ (A9)
s
—n_ 3
LE
where now
szna
wn' = w, 5 - 1
L=
AW
The form indicated by equation (483), where Eﬁ? <1, is

characteristic of the lower modes and represents damped
oscilla*ory motion. The form indicated by equation (A9),

@
where Tﬁ§'> 1 (damping greater than critical), is

characteristic of the higher modes and represents sub-
sidence motion,

From equation (A6) for the velocity and eguation (A7)
for the deflection, the complete behavior of the cantilever
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may be determined. The gquantitiss of interest are the
bending stresses, the shear stresses, and to some extent
the accelsrations. Where damping is present, the equa-
tions representing ths contribution of the nlb mode to
these guantities mey be given in *he two forms indiceted
by eguations (A3) and (49). In subsequent equat’ons,
however, only the form indicated by (AJ) is given, because
it is characteristic of the modes vhizh are of practical
importance.

.~ The bending stresses 0O(x,y,t)

Bending stresses
at any fiber a distanca y {rom the neutral axis are
Ao 2
é2w vy ,_XQ..,. .___.El.._t
Y = w — i T e Yo E.E
ol%,y,8) = By % = E 3 5> Ay sin w, 't f
oX n=1
where
1+ x . : 2‘.) h
(1 cos B, cosh @) (cosh By T cos 9, £

x X
+ sin Gn sinh 6, (cosh 9n i + cos B, T

< -(sinh en cos ©_ + cosh Gn sin Qn) sinh 8n :E + 3in Bn %‘)

n

+ 2rép l:sinh 8, cos B, cosh en’“% + cosh @, sin B, cos §, %-

(-~ ¢o0s B, cosh enéinh On T}Ji + sin By ch>:ll J

A =2
" eni—(l +r)(sinh 8, cos 6, - cosh §, sin@,) -2r6, sin g, sinhen]

The contribution to bending stress of the nth mods is
v 2
ikt
v .
op(%,7,8) TEg LAy e B sing,tt s

Average shear stresses.- Ths average shear stress
on the cross section is
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2
= 2 b§w v p -}\Z)'IEI t
T(x,t) = EpP ———~=E-—E B. e sin w, ! t 4
be c L = n
where
~ . X 4 s X M
(1 + cos 8, cosh 8,)(sinh 6, T * sin 6, f
+ sin en sinh en sinh 6, %{-- sin en %f—)
inh § 9+ cosh 0, si ne > x)
-(sinh 8, cos 8  + cosh O, sin 8,)(cosh B, T+ cos 6 '
+ 2ren sinh B, cos en sinh 0y % - cosh 8y sin en sin Gn%
b d X
{_~ cos en cosh en cosh en f+ cos en 'T‘)] ,
By = 2 —=

(1 +r) (sinh 8 cos @, - cosh 8, sin §,) - 2r6, sin 8, sinh 6,

The contribution to average shear stress of the nth
mode is

Aw 2
D¢

Ta(x,t) = E g-% B, € 2E sin w, 't 1

Lccelerations.- From equation (A6), with the aid of
the relation

pF(t)Z? = F(O)pd + F'(t)Z1

the acceleration anywhere on the beam is found to be



18

with the aid of
tions F‘@n %)

o0

2 E F(en % -1 reduces to zero when 0 <
7/

n=1

X

—

At equal to zero the

and only the term -vo.J

that at t 0O there is
tion of zero duration.

The contribution to

the orthogonal properties of the func-

1t is vossible to show that the gquantity

A

B b

—

quantity 2 2;_57@n %) is zero
n=1

remains. This term indicates

at the root an infinite accelera-

acceleration ol the nth mode is

R e
an(x,t) = - < o @n” Cp &r*a=;z:j§ e 2B [sin w, 't
1 - n
LE?
2, 2
Aw, i N \
E )
+ LE cos w 't |1
szna
-T2
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Comparison with the expression for wn(x,t) (equation (A8))

shows that the acceleration of each mode is out of phase
with the deflection. Vhen damping is sufficiently small,
however, the relation between the accelsration and the
deflection reduces to the well known result for undamped
vibration

an(x,t) = —ahz W (x,t)
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APPENDIX B

Numerical Example

Problem.- To calculate the theoretical bending and
shear stress at the position of strain gages on the steel
tube beam used in the experimental investigation of the
present paper for a mass at the Tip egual to the mass of
the beam, » = 1.

Length of beam, L, in. . . e e e e e e e e .. L2980
Qutside diameter ol tuhe, in, . . e o« . . 1.003
Distance to extreme fiber, maximwrum value

of v, in. . e s e e e e e e ... 0,502
Wall thickness of tube, in, . R 0 I 0 e
Radius of gyration of cross seotLon, €, in. . . . 0.345
Distance from root of beam to strain

gages, x, in. . e e e e e e e e e e e e 0.5%
Yodulus of elastwcnty, E (assumed), psi . . . . 29 %x 10
Velocity at imvact, v, fPS + o « « o « « « « « o« « 1.78
Velocity of sound in steel, ¢, fos . « . . . . . 16,600

The effects of damping will be neglected so that egua-
tions (7) and (8) may ve used. From the foregoing deta
of this nroblem

= L500 psi

ol
o
ea]
!

=
"

35,5 psi

o<
Hin

The valuess of An and B, for the different modes are

obtained frow figures 2 and 3 for »r = 1 and % = 0.0167.

The computed stresses are given in the following table
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stress

ampliitudes

[} 1
Mode . n Al’l Bl'l (pSi ) (pSi )
(L500 x An) | {35.8 x By)
1 2.18 | 2.40 9200 | 86
2 .89 | L.1 1010 Uy
Z A8 1 L.o 2160 143
Sum of flrst three 15,97 373

An aporoximation of the maximum total stresses can be
obtained by adding the stress amplitudes for the first
as indicated.

several modes

ll

John C.:

Cantilever Beam,
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Figure 9.- Comparison of theoretical with
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